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Abstract
An analytical approach to the problem of a negatively charged donor in an
infinitely deep quantum well (QW) in the presence of parallel electric and
strong magnetic external fields both directed perpendicular to the heteroplanes is
developed. The double adiabatic approximation is employed. The dependences
of the binding energy on the field strengths, the width of the well and the position
of the impurity within the well are derived in explicit form. The effect of the
inversion of the electric field is investigated. It is shown that the combined
potential acting on the ‘outer’ electron resembles that of a double QW. When
the levels associated with the two effective QWs anticross, a resonant structure
arises. The explicit dependence of the resonant splitting on the width of the QW,
the strength of the electric field and the position of the impurity are obtained.
Using the parameters associated with the GaAs QW, estimates of the inversion
shift of the binding energy and the frequency of the emitted resonant radiation
induced by the electric field are made.

1. Introduction

During the last decade, the subject of a negatively charged donor (D−) in quasi-two-
dimensional systems has been studied extensively both experimentally and theoretically. Much
of this work has concentrated on GaAs/GaAlAs structures; particularly on isolated single
quantum wells (QWs) subjected to an external magnetic field directed perpendicular to the
heteroplanes. The reason for this is that the magnetic field significantly increases the stability
of the charged donor. A comprehensive study and summary of the problem of the H− in the
presence of a strong magnetic field in an unbound medium was given recently by Al-Hujaj and
Schmelcher in [1]. Since the D− centres were identified in confined systems in magneto-optical
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spectra by Huant et al [2] a considerable literature of theoretical work has arisen (see [3, 4] and
references therein). The primary object was to calculate the binding energy of the D− donor
as a function of the strength of the magnetic field directed perpendicular to the heteroplanes,
the width of the QW and the position of the impurity centre within the QW. In particular it was
found that the binding energy increases with the magnetic field strength.

Although studies of charged complexes including the D− in the QW in the presence
of an electric field have been completed [5, 6], this problem is not an ideal candidate for
experimental investigation. One of the reasons for this is that the binding energy of the D− is
small. The binding energy |W0| of the D− in bulk material was calculated in [7, 8] yielding
|W0| = 0.055Ry where Ry is the Rydberg constant of the neutral donor. The relevant electric
field providing a significant decay of the system is defined by F0 = (2µ)1/2|W0|3/2(h̄e)−1

where µ is the electron effective mass. Because of the small binding energy |W0|, the D− in
bulk material decays significantly in the presence of even rather weak electric fields, i.e. for
fields of a typical strength F0 = 7.8 kV m−1 for the GaAs semiconductor. The fields F applied
to QWs of standard widths are of the same strengths. Thus D− in an ordinary QW subjected
to relatively weak electric fields tends to be unstable.

In the presence of a strong magnetic field the situation is completely different. Since
the strong magnetic field leads to a significant increase in the binding energy of the D− it is
expected to be much more stable with respect to effects of the electric field. Clearly the study
of the D− in QW structures is important and the optical and transport properties of devices
made from these structures are strongly affected by the presence of external fields. Recently
Grill and Dohler [9] found that a charged donor has a strong impact on the transport properties
of a two-dimensional electron gas in δ-doped heterostructures. A study of the neutral donor in
the QW in the presence of parallel electric and magnetic fields is in progress. Latge et al [10]
calculated the intradonor optical absorption spectra. The inversion effect of the electric field
and the coherent resonant tunnelling in the impurity QW have been studied in [11] and [12]
respectively. In contrast to this the problem of the D− in the QW subjected to parallel electric
and magnetic fields has not been addressed in the literature.

The majority of theoretical papers on the problem of the charged donor are based on
numerical calculations, which usually rely upon a variational method. However, a numerical
approach typically requires substantial computational efforts. Analytical results are of
immediate interest because the basic physics of the problem remains transparent throughout
the analysis. In addition a combination of analytical and numerical methods improves the
accuracy of the calculation of the impurity states in the QWs [13]. The present paper provides
an analytical investigation of the combined novel effects provided by the confinement and the
external fields on the negatively charged donor. The latter is placed in an infinitely deep QW
in the presence of parallel electric and strong magnetic fields both directed perpendicular to
the heteroplanes. The effect of the magnetic field is taken to be much greater than that of the
Coulomb field of the impurity centre. Note that extremely strong magnetic fields, in excess of
60 T, are nowadays available experimentally [14]. The extra confinement caused by a magnetic
field renders the impurity states less sensitive to the form of the barrier potential. In the present
work we consider a reasonably wide QW for which the width is greater than the impurity
Bohr radius. Thus the approximation of an infinitely deep QW applied here is justified. The
impurity can be positioned anywhere within the QW. The dependences of the binding energy
of the D− upon the field strengths, the width of the QW and the position of the impurity within
the well are found in explicit form. Specific effects of the confined structure induced by the
inversion of the electric field are studied. Resonant states of the extra electron caused by the
confinement and the electric field are shown to occur. Using the parameters associated with
the GaAs QW, estimates of the values to be expected in an experiment are made.
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The paper is organized as follows. In section 2 the details of the analytical approach
are presented and the general equation is derived. In sections 3 and 4 the limiting cases of
weak and strong electric field, particularly the effect of the inversion of the electric field, are
considered, respectively. The resonant tunnelling of the extra electron is studied in section 5.
We provide a discussion of our results in section 6 and the conclusions in section 7.

2. General theory

The z-axis is chosen to point along the direction of the uniform magnetic (B) and electric (F )

fields, which are applied perpendicular to the heteroplanes. The QW is treated as a square well
of width d bounded by infinite barriers at the planes z = ±d/2. The parameters relevant to
the calculation are the impurity Bohr radius (a0), the magnetic length (aB) and the distance of
the impurity centre (b) from the mid-point of the QW that is taken to be at z = 0. They are
defined as usual by

a0 = 4πεε0h̄2

µe2
aB =

√
h̄

eB
where ε is the dielectric constant and µ is the electron effective mass. We take the energy
bands to be parabolic, nondegenerate and separated by a wide energy gap.

In the effective mass approximation the equation describing the D− donor formed by the
impurity centre and two spinless electrons at positions ri (ρi , zi ) (i = 1, 2) has the form{∑

i=1,2

[
1

2µ

(
−ih̄∇i +

e

2
[Bri ]

)2

− e2

4πε0ε|ri − bez| − eF(zi − b)

]
+

e2

4πε0ε|r2 − r1|
}

× �(r1, r2) = E�(r1, r2) (2.1)

where ez is the unit vector. We omit the spin Zeeman term because it does not influence the
binding energy of D− that is the subject of our investigation.

By solving this equation subject to the boundary conditions

�

(
ρ1,±

d

2
; ρ2,±

d

2

)
= 0, (2.2)

the energy E and wavefunction � can be found in principle. In the limit of strong magnetic
field for which

aB/a0 � 1 (2.3)

the adiabatic approximation becomes appropriate. The electronic motion parallel and
perpendicular to the magnetic field are separated. The solution to equation (2.1) describing
the spin-singlet state of the D− is taken in the form

�(r1, r2) = 1√
2
χ⊥(ρ1)χ⊥(ρ2)[ f (z1)ϕ(z2) + f (z2)ϕ(z1)]. (2.4)

In the above expression the function

χ⊥(ρ) = 1√
2πaB

exp

(
− ρ2

4a2
B

)
(2.5)

describes the transverse motion of the electron with the energy E⊥ = h̄eB
2µ

(ground Landau
level) in the x–y plane. The function f (z) is the ground state wavefunction of the ‘inner’
electron tightly bound by the impurity centre (D0 state). The function f (z) satisfies

− h̄2

2µ

d2 f (z)

dz2
+ [V (z) − eF(z − b)] f (z) = � f (z) (2.6)



2728 B S Monozon and P Schmelcher

with the boundary conditions

f (±d/2) = 0 (2.7)

and

V (z) = − e2

4πε0ε

∫ |χ⊥(ρ)|2√
ρ2 + (z − b)2

dρ. (2.8)

It is convenient to introduce the notation � = −Ry/λ
2 where Ry = e2/8πε0εa0 is the impurity

Rydberg constant and λ (<1) is the corresponding quantum number. We consider a reasonably
wide QW for which d > a0 such that the ground state has a quasi-Coulomb character and the
energy � < 0 [15]. Narrowing the QW increases the binding energy of the D− which makes
it more favourable for an experimental study. However, the effects caused by the electric field
F and shift b of the impurity within the QW become insignificant, because of the small energy
eFd and displacement |b| � d/2 for the QW of small width d . For the subject of this paper,
i.e. study of the dependences of the binding energy on the electric field and displacements,
relatively wide QWs are preferable. Also we assume that the impurity centre is separated from
the edge of the QW by a distance greater than the effective radius of the ground state which
in turn implies that d/2 − |b| � a0λ. For this case it was shown in [15] that the effect of the
boundaries of the QW on the electronic states is exponentially small. For the GaAs QW of
width d = 320 Å subjected to a magnetic field B = 30 T for which the numerical calculations
are performed, the allowed displacements b are limited to being of the order of 100 Å. This
shift is more than 60% of half of the width of the QW. For such displacements the relative
change of the electron density induced by the boundary is less than 0.1. As the impurity centre
is approaching the boundary of the QW (|b| ≈ d/2), the longitudinal states of the electrons
are changed drastically. The impurity positioned at the interface requires special consideration
that is beyond the scope of this paper.

Further, we use the solution to equation (2.6) for the bulk semiconductor (d = ∞) obtained
originally in [16]. The expression for the wavefunction f (z) is given by

f (z) = 1√
a0λ

exp

(
−|z − b|

a0λ

)
. (2.9)

The quantum number λ (<1) is the smallest root of the equation

−1

2
ln

(
γ λ2

2

)
+ ψ(1 − λ) +

1

2λ
+

3

2
C = 0 (2.10)

where γ = a2
0/a2

B (�1), C is the Euler constant (=0.577) and ψ(x) is the psi function (the
logarithmic derivative of the gamma function). In the logarithmic approximation for which
γ � 1 and ln γ � 1, we have

λ =
(

ln
γ

2
− C

)−1

� 1. (2.11)

At this stage we use a fact that is unique to the one-dimensional quasi-Coulomb potential V (z),
equation (2.8): the energy � and the wavefunction f (z) of the ground state are described by
the quantum number λ < 1. This means that the effective motion of the electron in the ground
state is the fastest possible. This is the basis for an adiabatic approximation according to which
the wavefunction of the ‘outer’ electron ϕ(z) is governed by the effective potential representing
an average with respect to the function f (z). The equation for the wavefunction ϕ(z) has the
form

− h̄2

2µ

d2ϕ(z)

dz2
+ [U(z) − eF(z − b)]ϕ(z) = Wϕ(z) (2.12)
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with

U(z) = − e2

4πε0ε

(∫ |χ⊥(ρ)|2√
ρ2 + (z − b)2

dρ −
∫ |χ⊥(ρ1)|2|χ⊥(ρ2)|2| f (z ′)|2√

(ρ1 − ρ2)
2 + (z − z ′)2

dρ1 dρ2 dz′
)
(2.13)

and with

W = E − 2E⊥ − � +
5h̄2e2 F2

32µ�2
. (2.14)

The last term on the right-hand side of equation (2.14) is the correction to the energy
� = −Ry/λ

2 induced by the electric field F . The wavefunction ϕ(z) satisfies the boundary
conditions

ϕ(±d/2) = 0. (2.15)

Below, we focus on the binding energy of the D−. Although the additional spin Zeeman term
does not affect the binding energy, it influences the total energy of the D−. It was pointed
out in [1] that for the hydrogen negative ion H− subjected to very weak magnetic fields, the
spin-singlet state is the ground state of the system. With increasing magnetic field strength the
spin-triplet state becomes the ground state. This is caused by the spin Zeeman term, which is
determined by the g-factor of the free electron, g0 = 2, and which lowers the total energy of
the spin-triplet state. The crossover takes place at B1 ≈ 104 T, which is much less than the
atomic unit of the magnetic field B0 = 2.35 × 105 T. It is important that the spin-triplet state,
being the ground state for B > B1, is considerably less bound than the spin-singlet state. For
strong magnetic fields B > B0, the binding energy of the spin-singlet state exceeds that of the
spin-triplet state by a factor of more than 2.

For GaAs bulk material having the electron effective g-factor ge ≈ −0.44, the spin Zeeman
shift of the total energy of the spin-triplet state is less than that of the H−. The crossover of
the spin-singlet and spin-triplet states takes place at B1 ≈ 3 T, which is less than the ‘donor’
magnetic field B0 = 6 T, determined by the condition a0 = aB . Thus in the presence of strong
magnetic fields B > B0 > B1, the spin-singlet state being the excited state remains the most
bound state of the D− in GaAs bulk crystal.

In the QW the binding energy of the D− depends strongly on the position of the impurity
centre within the well. This effect can be more important than the shift of the total energy of
the D− caused by the spin Zeeman term. For the impurity centre positioned close to the mid-
point of the wide QW, the results are qualitatively the same as for the bulk material. However,
for the impurity centre displaced from the mid-point of the QW the situation is different. It
was shown in [4] that in the presence of a magnetic field B ≈ 60 T for the impurity centre
shifted to b < b0 = 0.25d from the mid-point of the GaAs QW of width d = 200 Å, the
binding energy of the spin-singlet state exceeds that of the spin-triplet state, while for the
displacements b > b0, the spin-triplet state becomes more bound. The narrower the QW, the
less the critical displacement b0. In the following we consider sufficiently wide QWs subjected
to strong magnetic fields for which the spin-singlet state remains the most tightly bound state
for a relatively wide region b < b0.

The binding energy Eb of the D− in the QW is defined as usual by the difference between
the sum of the energies of the neutral donor and the electron in the QW

(
E⊥ + � − 5h̄2e2 F2

32µ�2

)
+

(E⊥ + E (0)) and the energy of the charged donor E . The energy E (0) is the energy of the ground
state of the electron in the QW in the presence of the electric field. Using (2.14) we have

Eb = E (0) − W. (2.16)
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Figure 1. A sketch of the potentials V (z)−eF(z−b) (equation (2.8)) andU(z)−eF(z−b) (equation
(2.13)) and energies of the ‘inner’ electron � = −Ry/λ

2 and ‘outer’ electron, for which W (0)

(equation (5.4)) is the donor level, E(el) = E(0) (equation (4.2)) is the ‘electric’ level and �W
(equation (5.8)) is the resonance gap. The impurity centre is positioned at z = b in the QW of
width d subjected to electric field F . The function f (z) (equation (2.9)) is the wavefunction of the
‘inner’ electron.

A sketch of the effective potentials V (z) − eF(z − b) (equation (2.8)) and U(z) − eF(z −
b) (equation (2.13)), the resulting wavefunction f (z) (equation (2.9)) and the energies �

in (2.6) and W in (2.12) is shown in figure 1.
Under the condition λ < 1 the effective radius of the ground state a0λ is less than the

Bohr radius a0. This is used in proceeding with the analytical calculations. In the zeroth
approximation for (2.13) we arrive at

U(z) ≈




−e2√π(
√

2 − 1)

8πε0εaB
at z = b

− e2a2
B

4πε0ε|z − b|3 for |z − b| � aB

(2.17)

and the potential U(z) has the form of a finite well of the effective width aB . Since the magnetic
length aB is much less than the Bohr radius a0, we replace the potential U(z) (equation (2.13))
by a δ-function-type potential. Leaving aside the effect of the boundaries of the QW, we put

U(z) = − h̄2q0

µ
δ(z − b) (2.18)

where the parameter q0 is defined by the ground energy level W0 in the bulk semiconductor,
namely q0 = (−2µW0/h̄2)1/2.

Further, we consider a wide QW for which the energies W are negative (W < 0). The
solution to equation (2.12) satisfying the boundary conditions (2.15) is given by

ϕ(z) = −
∫ +d/2

−d/2
GW (z, z′)U(z′)ϕ(z′) dz ′ (2.19)

where the Green function GW (z, z′) of the electron in the rectangular QW of width d in the
presence of an electric field F has the form
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GW (z, z′) = 2πµ

h̄2σ
{[Bi(−η′) Ai(−η1) − Ai(−η′) Bi(−η1)]

× [Bi(−η2) Ai(−η) − Ai(−η2) Bi(−η)]}
× {[Bi(−η1) Ai(−η2) − Ai(−η1) Bi(−η2)]}−1; z > z ′ (2.20)

and where Ai(u) and Bi(u) are the Airy functions [17]. In the above expression the following
notations are used:

σ =
(

2µeF

h̄2

)1/3

; η(z) = σ(z − b − z0); z0 = h̄2q2

2µeF
;

η′ = η(z′); η1,2 = η

(
∓d

2

)
; q =

(
−2µW

h̄2

)1/2

.

The expression for the Green function for the region z < z′ can be obtained from
equation (2.20) by replacing z by z′ and vice versa. The wavefunction ϕ(z) and the Green
function GW (z, z′) both satisfy the boundary conditions (2.15).

Substituting the expressions (2.18) and (2.20) into equation (2.9) and then setting z = b
in (2.19), we obtain the transcendental equation
2πq0

σ

[Bi(−η0) Ai(−η1) − Ai(−η0) Bi(−η1)][Bi(−η2) Ai(−η0) − Ai(−η2) Bi(−η0)]

[Bi(−η1) Ai(−η2) − Ai(−η1) Bi(−η2)]
= 1

(2.21)

where η0 = −σ z0. By solving equation (2.21) the parameter q and the energy W can be found
as functions of the width d of the QW, the position of the impurity centre b and the electric
field strength F .

In order to study qualitatively the dependence of the energy W0 and the parameter q0 on
the magnetic field we solve equation (2.12) with the potential U(z) (equation (2.13)) for the
bulk semiconductor (d = ∞) in the absence of the electric field (F = 0). It is convenient to
introduce the notation

ν =
√

− R

W0
; u = 2(z − b)

a0ν
; g0 = 2ρ

a0ν
; g12 = 2|ρ1 − ρ2|

a0ν
.

Equation (2.12) then becomes

ϕ′′(u) + λ[〈0|(u2 + g2
0)

−1/2|0〉 − 〈1, 2|(u2 + g2
12)

−1/2|1, 2〉]ϕ(u) − 1
4 ϕ(u) = 0 (2.22)

where 〈0||0〉 and 〈1, 2||1, 2〉 are averages with respect to the functionsχ⊥(ρ) and χ⊥(ρ1)χ⊥(ρ2)

respectively. Setting in (2.22) u � g0, g12 ∼ 2aB/a0ν and then neglecting the term
proportional to |u|−3 we obtain

ϕ(u) = A exp
(− 1

2 u
)

(2.23)

where A is a constant.
In the region u � 1, an iteration is performed by double integration of equation (2.22)

using the trial function ϕ(0)(u) satisfying the boundary conditions

ϕ(0)(0) = B; ϕ(0)′(0) = 0

where B is a constant.
A comparison of the coefficients is then performed for the result of the integration and

the expansion of the function (2.23) for u � 1. When terms of the same order are equated
a set of linear algebraic equations are found. The system of these equations is solved by the
determinantal method to give the following expression for the quantum number ν that in turn
leads to the binding energy |W0| of the D− in bulk semiconductors:

|W0|
Ry

≈
(

1 +

√
2π(

√
2 − 1)√
γ

)−2

. (2.24)
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It follows from equation (2.24) that for increasing magnetic field strength, the binding
energy of the D− both in the bulk semiconductor and in the QW increases. This dependence
coincides qualitatively with those obtained numerically by a variational approach (see [1, 4]
and references therein). Note that for strong laboratory magnetic fields B ≈ 30–60 T
corresponding to the parameter γ ≈ 5–10 for the GaAs material, equation (2.24) gives for the
ratio |W0(γ )|/|W0(5)| the values 1.14 and 1.21 for the parameters γ = 8 and 10 respectively.
This is close to the relative energies 1.16 and 1.25 respectively presented in [1]. If a finite
height of the barriers bounding the QW is taken into account [18], the binding energy of the
D− for the parameter γ = 5 in the QW of width d = 4 a0 calculated from equation (2.21),
coincides to an accuracy of several per cent with the result obtained numerically [3]. Thus our
approach to the description of the D− in the presence of strong magnetic fields is qualitatively
justified. A further quantitative study requires the numerical solution of equation (2.12) in
which the potential U(z) should be calculated using the wavefunction f (z′) (equation (2.9)).

Note that the binding energy in the bulk semiconductors was studied in detail in a number
of papers for a wide range of the magnetic field strength [1]. This allows one to treat the value
q0 as a parameter of the problem being given either by experiments or numerical calculations.
Below we focus on the dependence of the binding energy Eb on the width d of the QW, the
displacement of the impurity centre b and the electric field strength F .

3. Weak electric field

For a weak electric field F � F0 where F0(q) = (2µ)1/2|W (q)|3/2

eh̄ is the effective electric field
associated with the charged donor in the QW, an asymptotic expression for the Airy functions
Ai(u) and Bi(u) for u < 0, |u| � 1 in equation (2.21) can be used [17]. Dropping some
cumbersome algebra, equation (2.21) is transformed into

2α0

α

sinh α(1−s)
2 sinh α(1+s)

2

sinh α

{
1 +

1

4

(
F

F0

)
α2

[
s coth α +

(1 − s)2

4
coth

α(1 − s)

2

− (1 + s)2

4
coth

α(1 + s)

2

]
+

5

32

(
F

F0

)2[
1 + α

(
coth α

− (1 − s)

2
coth

α(1 − s)

2
− (1 + s)

2
coth

α(1 + s)

2

)]}
= 1 (3.1)

where α0 = q0d , α = qd and where s = 2b/d .
For small displacements of the impurity from the mid-point of the QW (b = 0) for which

s � 1, the explicit solution to equation (3.1) can be found to give in turn for the energy W

W (F, b) = W (0, 0) + �W (F, b) (3.2)

where W (0, 0) is the energy of the ‘outer’ electron for the case of the impurity positioned at
the centre of the QW (b = 0) of width d in the absence of the electric field (F = 0) and where
�W (F, b) is the shift of the energy induced by the electric field F and the displacement of

the impurity b = ds/2. The energy W (0, 0) is defined by the expression W (0, 0) = − h̄2q2
1

2µ
in

which the parameter q1 satisfies the equation
α0

α1
tanh

α1

2
= 1; α1 = q1d. (3.3)

The correction to the energy �W can be written in the form

�W (F, b) = −|W (0, 0)| 5

16F2
0

[(F − F1)
2 − �(α1)F2

1 ] (3.4)
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with

�(α) = 1 + 10
(1 − α

sinh α
) cosh2 α

2

α2( α
2 coth α

2 − 1)2
(3.5)

and where

F1(α1, s) = −4

5
F0

α2
1(

α1
2 coth α1

2 − 1)

(sinh α1 − α1)
s (3.6)

is the effective electric field caused by the displacement of the impurity s from the centre of
the QW of finite width d .

It follows from equation (3.4) that in the absence of the electric field (F = 0) the
displacement of the impurity from the centre of the QW leads to an increase in energy �W (0, b)

where

�W (0, b) = |W (0, 0)| 5

16
[�(α1) − 1]

(
F1

F0

)2

> 0. (3.7)

The expression (3.7) coincides with that obtained in [18] in which the double adiabatic
approximation was applied originally and in which the D− in the QW subjected to a strong
magnetic field has been considered. From equation (2.16) it is clear that the binding energy
Eb decreases with increasing shift of the impurity b. This result is common to the neutral [19]
and charged [4] donors both in the absence and in the presence of the magnetic field.

Clearly equation (3.4) shows that the electric field F shifts the energy of the outer electron
bound by the impurity located at the centre of the QW (b = 0) towards lower energies. The
corresponding red-shift �W (F, 0) is defined by

�W (F, 0) = −|W (0, 0)| 5

16

(
F

F0

)2

< 0. (3.8)

For the electric fields F+,− = F1[1 ± �(α1)
1/2], the energy shift �W (F+,−, b) = 0. For

these electric fields the blue- and red-shifts induced by the displacement b and the electric field
F , respectively, cancel. For the region of the electric fields F− < F < F+ the effect of the
displacement b dominates over that of the electric field F and �W (F, b) > 0 with a maximum

�Wmax = |W (0, 0)| 5

16
�(α1)

(
F1

F0

)2

; at F = F1. (3.9)

For the electric fields F < F− and F > F+, the energy shift �W (F, b) < 0. The
binding energy Eb can be obtained from equation (2.16) in which the energy W is defined
by equations (3.2) and (3.4). The energy of the ground state of the electron in the QW in the
presence of a weak electric field E(0) has the form [20]

E (0) = h̄2π2

2µd2
− 1

24π

(
15

π2
− 1

)
µe2 F2d4

h̄2 . (3.10)

The binding energy Eb as a function of the weak electric field F for different small
displacements b is shown in figure 2. The dependence of the binding energy Eb on small
displacements of the impurity b for different weak electric field strengths F is depicted in
figure 3.
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Figure 2. The dependence of the binding energy Eb/E(0)
b (E(0)

b is the binding energy in bulk
material) of the D− in a GaAs QW of width d = 320 Å calculated from equations (2.16), (3.2) and
(3.4) on the dimensionless electric field F/F0 (F0 is the donor field) for different displacements of
the impurity b = s(d/2).

3.1. Inversion effect of the electric field

It follows from equation (2.21) that the QW containing the D− is suitable for demonstrating
the inversion effect of the electric field, i.e. changes of the energy of the ‘outer’ electron
W (F, b) with reversion of the direction of the electric field (+F → −F). In particular,
for weak electric fields F � F0 and small displacements s � 1, the inversion energy shift
δW = W (+F, b) − W (−F, b) can be derived from equation (3.4) with the result

δEb = −δW = 5

4
|W (0, 0)| F1 F

F2
0

. (3.11)

The inversion shift δW ∼ F F1 ∼ Fb increases with increasing electric field F and
displacement b and vanishes when the impurity centre is positioned at the mid-point of the
QW (b = 0). The wider the QW, the less the effects, including the inversion shift (3.11)
provided by the displacement b. It follows from (3.3), (3.5), (3.6) that for a wide QW for
which α0 = q0d � 1,

W (0, 0) ≈ W0[1 − 4 exp(−α0)]; F1 ≈ − 4
5 F0sα3

0 exp(−α0);
�(α0) = 10α−4

0 exp(α0)

and in the limiting case of the bulk material (α0 → ∞), W (0, 0) = W0, F1 = 0, δEb = 0. As
expected, in this case the expression (3.8) coincides with that obtained earlier for the quasi-
one-dimensional electron in the presence of an electric field in an unbounded medium [21].



The D− centre in a quantum well in the presence of parallel electric and strong magnetic fields 2735

Figure 3. The binding energy Eb of the D− in a GaAs QW of width d = 320 Å calculated from
equations (2.16), (3.2) and (3.4) and scaled to the binding energy E(0)

b in bulk material as a function
of the dimensionless displacement of the impurity s = 2b/d for the different electric field strengths
F/F0 = 0.0—(3); 0.4—(2); 0.6—(1), where F0 is the donor field.

Figure 4. The dependence of the inversion shift of the binding energy δEb/E(0)
b (equation (3.11);

E(0)
b is the binding energy in bulk material) of the D− in a GaAs QW of width d = 320 Å on the

dimensionless electric field F/F0 (F0 is the donor field) for different displacements of the impurity
b = s(d/2).

The dependence of the inversion shift of the binding energy δEb = Eb(+F, b)− Eb(−F, b) on
the weak electric field strength F for different small displacements of the impurity b is shown
in figure 4.
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4. Strong electric field

In order to find the energy E(0) determining the binding energy Eb in equation (2.16) we set
in expression (2.21) W ≡ E(0) and then in the zeroth approximation q0 = 0. We have from
equation (2.21)

Bi(−η1) Ai(−η2) − Bi(−η2) Ai(−η1) = 0. (4.1)

For sufficiently strong electric field and wide QW an asymptotic expansion of the Airy
functions Ai(−η1) and Bi(−η1) for η1 < 0, Bi(−η1) �= 0 can be employed and equation (4.1)
reduces to Ai(−η2) = 0 having the smallest root η2 = 2.34, giving in turn for the ground
energy level E (0)

E (0) = −eF(d/2 − b) + 2.34E0; (4.2)

where E0(F) = (
h̄2e2 F2

2µ

)1/3
.

Actually the energy E (0) in equation (4.2) is the ground energy level in the triangular
well, having its bottom at the value −eF

(
d
2 − b

)
and formed by the electric field potential and

right-hand boundary of the QW (see figure 1).
In the next approximation we take into account the effect of the impurity assuming the

parameter q0 in equation (2.21) to be small. Expanding the Airy functions Ai(u) and Bi(u) in
equation (2.21) in the vicinity of the unperturbed value E (0) given by equation (4.2) and taking
into account that Bi(−2.34) Ai′−1(−2.34) = −0.64, we obtain for the energy W = E (0)+�W ,
where E (0) is defined by equation (4.2) and where the correction to the energy E (0) caused by
the impurity has the form

�W = −0.64(2π)E0

(
F0

F

)1/3

Ai2(−ς) (4.3)

where ζ = −σ(d/2 − b) + 2.34. The above equation determines the binding energy
Eb = E (0) − W = −�W . It follows from equation (4.3) that the impurity potential leads to
a red-shift of the energy �W < 0, depending in particular on the position b of the impurity
centre. This dependence is described by a factor Ai2(−ζ ) in equation (4.3). For the impurity
positioned at b ≈ d/2 we have ζ ≈ η2 and Eb = �W ≈ 0. When the impurity is shifted to
the opposite boundary of the QW, the binding energy Eb increases and reaches a maximum at
ζ = 1, i.e. b = d/2 − 1.34σ−1, with the result

Eb,m = 0.64 × 0.5362 × 2π

(
F0

F

)1/3

E0. (4.4)

Upon further shift of the impurity in the same direction the binding energy Eb decreases
and becomes exponentially small at b ≈ −d/2. For these displacements of the impurity,

Eb = 0.32E0

(
F0

F

)1/3

|ς |−1/4 exp

(
−4

3
|ς |3/2

)
(4.5)

where |ζ | = σd − 2.34 � 1. Expressions (4.2)–(4.6) are valid for a sufficiently strong
electric field F � F0 and wide QW. Figure 5 shows the binding energy Eb as a function of
the displacement of the impurity b for different strong electric fields F .

For strong electric field F the inversion shift of the binding energy δEb = Eb(F, +b) −
Eb(F,−b) becomes

δEb = 0.64(2π)E0

(
F0

F

)1/3

[Ai2(−ς+) − Ai2(−ς−)] (4.6)

where ς± = − σd
2 (1 ∓ s) + 2.34. The dependence of the inversion shift of the binding energy

δEb on the displacement of the impurity b for different electric field strengths F is depicted
in figure 6.
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Figure 5. The binding energy Eb = −�W (equation (4.3)) of the D− in a GaAs QW of width

d = 320 Å scaled to the energy E0 =
(

h̄2e2 F2

2µ

)1/3
as a function of the dimensionless displacement

of the impurity s = 2b/d for the different electric field strengths F/F0 = 3.33—(1); 6.66—(2);
10.0—(3), where F0 is the donor field.

Figure 6. The dependence of the inversion shift of the binding energy δEb/E0 (equation (4.6);

E0 = ( h̄2e2 F2

2µ
)1/3) of the D− in a GaAs QW of width d = 320 Å on the dimensionless displacement

of the impurity s = 2b/d for the different electric field strengths F/F0 = 3.33—(1); 6.66—(2);
10.0—(3), where F0 is the donor field.

5. Coherent resonant tunnelling

It follows from figure 1 that the combined potential governing the states of the external electron
has the appearance of a double QW. The first effective well is the so-called donor well, formed
by the short-range potential and the left-hand boundary of the QW closest to the impurity.
The second effective well (the triangular ‘electric’ well) is formed by the potential of the
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electric field F and the right-hand boundary of the QW. When the levels associated with the
two effective QWs anticross, the single QW containing the charged donor can be treated as a
resonant structure. This structure is similar to that realized for the neutral donor [12].

For a weak electric field under the condition |η0| � 1, equation (2.21) can be written in
the form

Ai(−η2)

{
1 − q0

q

[
1 − exp

(
−2q

(
d

2
+ b

))]}

+
1

2
Bi(−η2) exp(−2�) ×

{
1 − exp

[
−2q

(
d

2
+ b

)]}
= 0 (5.1)

where � = 2
3 |η0|3/2.

The first term on the left-hand side of this equation describes the ‘electric’ levels (the first
factor) and the donor level (the second factor). The last term is responsible for the tunnelling of
the extra electron from the donor well towards the ‘electric’ well through the potential barrier
with � � 1.

Neglecting the tunnelling term as a zeroth approximation, equation (5.1) decomposes into
two independent equations:

Ai(−η2) = 0 (5.2)

and

1 − q0

q

{
1 − exp

[
−2q

(
d

2
+ b

)]}
= 0 (5.3)

which arise from the two effective wells.
Equation (5.2) describes the ‘electric’ levels in the triangular well. The solution to

this equation, corresponding to the ground level, has the form η2 = 2.34. Obviously the
explicit expression for the energy of the ‘electric’ level E (el) is given by the right-hand side of
equation (4.2).

Equation (5.3) describes the ground level in the donor well perturbed by the left-hand
boundary of the QW. The solution to this transcendental equation can be found easily. In
particular, for a wide QW for which q0(d + 2b) � 1, the expression for the donor level W (0)

can be written in the form

W (0) = W0

{
1 − 2 exp

[
−2q0

(
d

2
+ b

)]}
. (5.4)

Thus, in the zeroth approximation, the system of the energy levels is the sum of two
independent energies E (el) and W (0). For an arbitrary electric field F , the donor and ‘electric’
states are not in resonance. The electron having the energy W (0) is localized within the donor
well whilst the electron having the energy E (el) is localized within the ‘electric’ well. Under
the condition W (0) = E (el) the donor and ‘electric’ levels appear to be in resonance. Using this
condition and the expressions (4.2) and (5.4) for the energy levels, we arrive at the equation
for the resonant electric field Fr for the wide QW:

−eFr

(
d

2
− b

)
+ 2.34E0(Fr ) = W0

{
1 − 2 exp

[
−2q0

(
d

2
+ b

)]}
. (5.5)

In the first approximation, the last term on the left-hand side of equation (5.1) is taken
into account. We expand the Airy function Ai(−η2) and the second factor in the first term
in (5.1) in power series in q − q2 and q − q1 respectively, where q2 and q1 are obtained in the
zeroth approximation from equations (5.2) and (5.3). The second term is taken at q = q1,2.
Substituting the resulting expansions into equation (5.1) and using equations (5.2) and (5.3),
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Figure 7. The dependence of the resonance gap �W (equation (5.8)) between the donor (W (0)) and
‘electric’ (E(el) levels (see figure 1) on the dimensionless displacement s = 2b/d of the impurity
from the mid-point of a GaAs QW of width d = 700 Å; E(0)

b is the binding energy of the D− in
bulk crystal.

we arrive at a quadratic equation for the parameter q . The roots of this equation q(1,2) can be
written in the form

q(1,2) = 1
2 (q1 + q2) ± [

1
4 (q1 − q2)

2 + �2]1/2
(5.6)

where

�2 = − q2
1

q0q2

(
µeF

4h̄2

)2/3 Bi(−2.34)

Ai′(−2.34)

[
1 + 2(q1 − q0)

(
d

2
+ b

)]−1

exp(−2�). (5.7)

Equation (5.7) describes the effect of an anticrossing of the energy levels, which are
derived from the states, which were originally located in the donor and ‘electric’ wells. It
follows from (5.7) that, if the electric field F and the resonance value Fr are far apart, and
hence 1/4(q1 − q2)

2 � �2, the parameters q(1,2) are close to those obtained in the zeroth
approximation, i.e. q(1) ≈ q1 and q(2) ≈ q2. In the case of resonance for which F = Fr and
q1 = q2 ≡ q(0), it is found that q(1,2) = q(0) ± �.

At resonance, the differences between the parameters q(1) and q(2) and their associated
energies W (2) − W (1) = �W are given by

q(1) − q(2) = 2� and �W = 2h̄2

µ
q(0)�. (5.8)

Thus if resonance between the donor level (5.4) and the ‘electric’ level (4.2)
occurs, crossing occurring in the zeroth approximation turns into anticrossing in the first
approximation.

For a wide QW (q0d � 1, q1 ≈ q0) the energy gap �W (equation (5.8)) becomes

�W = 1.60|W0|
(

Fr

F0

)1/3

exp

(
−2F0

3Fr

)
(5.9)

where F0 as well as above is the effective electric field associated with the charged donor and
Fr is the resonant electric field. The dependence of the resonance gap �W on the position of
the impurity b is depicted in figure 7.

6. Discussion

The basic physics associated with the behaviour of the binding energy of a charged donor in
parallel fields remained transparent within our analysis. From the analytical approach described
above, the dependences of the binding energy on the magnitudes of the external field, on the
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width of the QW and on the position of the impurity have been obtained. Since the effects of
the magnetic field and the width of the QW have been studied in detail previously (see [4] and
references therein), we concentrate here on the influence of the electric field strength and the
position of the impurity.

If the applied weak electric field F < F0 and resonant field Fr are very different
in magnitude, the system of the energy levels is the sum of the independent donor level
W (equation (3.2)) and ‘electric’ level E (el) (equation (4.2)). The wavefunction is localized
within the donor or ‘electric’ well respectively. The shift of the donor level�W (F, b) (equation
(3.4)) depends on the applied electric field F and the effective field F1 ∼ s (equation (3.6))
associated with the displacement s = 2b/d . The effects of both fields are described in section 3.
The dependence of the binding energy Eb (equation (2.16)) of the D− in the GaAs QW of
width d = 320 Å on the electric field F is shown in figure 2. It is seen that the binding energy
increases with increasing electric field. The reason for this is that for a weak electric field
the energy red-shift of the free electron in the QW �E (0) ≈ −µe2 F2d4(24π h̄2)−1 (equation
(3.10)) is less than that of the weakly bound extra electron �W ≈ −µe2 F2(h̄2q4

1 )−1 (equation
(3.8)) for the QW of width d = 320 Å for which the parameter q1d ≈ 1.8 and the donor
field F0 ≈ 9 × 104 V m−1. However, for the neutral donor having a significantly greater
binding energy ∼q2

1 , the relationship between the above-mentioned energy red-shifts may
be different. Using the data presented in [19, 22] for the D0 in the GaAs QW of width
d ≈ 320 Å in the presence of a strong magnetic field providing the parameter γ = 5, we
estimate �W/�E (0) ≈ 0.05. In the absence of the magnetic field the binding energy of the
D0 becomes less. For a wide QW of width d � a0, the energy red-shift �W can be estimated
as �W = −9µe2 F2a4

0(4h̄2)−1. For a GaAs QW (a0 = 98.7 Å of width d = 500 Å we obtain
�W/�E (0) ≈ 0.5. Thus the binding energy of the D0 decreases with increasing electric field
such that �Eb(F) ∼ −F2. This is in agreement with the results of the variational calculations
performed by Yoo et al [23] and Latge et al [24]. One can see in figure 2 that as the impurity
centre moves away from the mid-point of the QW, the effect of the electric field on the binding
energy of the D− becomes more pronounced. The reason for this is that the extra electron is
found to be less strongly bound (see figure 3).

The binding energy Eb (equation (2.16)) as a function of the displacement b in the
presence of a weak electric field is presented in figure 3. Generally this dependence has
an asymmetric form. The binding energy reaches a maximum for a certain position b of
the impurity determined by the electric field. In the absence of the electric field (F = 0) the
binding energy has a maximum for the impurity positioned at the mid-point of the QW (b = 0).
With increasing electric field strength F the maximum is shifted insignificantly towards the
right-hand boundary of the QW following the displacement of the electron density.

It follows from equation (3.11) and figure 4 that for weak electric field F < F0 the
inversion shift of the binding energy δEb is proportional to both the electric field strength F
and the position of the impurity b. The greater each of these parameters is, the greater the
inversion shift δEb is. If the width of the QW increases, the inversion shift decreases and
vanishes in the limiting case of bulk material.

In the case of resonance for which F ≈ Fr , the donor and ‘electric’ states become
very close in energy. The resonant gap �W is defined by equations (5.8) and (5.9). On
ignoring possible relaxation processes, coherent resonant tunnelling between the donor well
and triangular well becomes possible. As a result, a drastic redistribution of the wavefunction
and consequent emission of high-frequency coherent radiation occurs. The wavefunctions
related to the components of the energy doublet attain a twin-peak configuration.

It is clear from equations (5.8), (5.7) and (5.9) that the resonant gap �W increases as
the resonant field Fr increases. Equation (5.5) enables the dependence of the resonant field
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Fr on the width of the QW d and the position of the impurity centre b to be obtained. The
wider the QW, the smaller the resonant field Fr . The shift of the impurity centre towards the
right-hand boundary (b increases) leads to an increase of the resonant field Fr . Figure 7 shows
the dependence of the resonant gap �W as a function of the position of the impurity b.

For a strong electric field F > F0, the binding energy Eb = −�W , where �W (equation
(4.3)) is the shift of the energy associated with the extra electron captured by the neutral
donor. The binding energy Eb(b) (see figure 5) follows the electron density |ϕ(z)|2, where
ϕ(z) is the wavefunction of the extra electron in the QW in the presence of the electric field
F . For the impurity positioned close to the right boundary of the QW (b ≈ d/2, s ≈ 1),
ϕ(z) ∼ Ai(−η2) ≈ 0 and Eb ≈ 0. When the impurity centre is shifted to the left-hand
boundary of the QW, both the electron density and the binding energy increase and each reaches
a maximum at z = b = d/2−1.34σ−1. Further shift in the same direction leads to the binding
energy decreasing. The relative binding energy Eb/E0 decreases with increasing electric field
for the impurity positioned at about s < 0.45 and increases for s > 0.45. Following the
notation used in figure 5, we have Eb1 = 1.16 meV, Eb2 = 0.78 meV and Eb3 = 0.47 meV
for the position s = −0.5, while for the position s = 0.6 we obtain Eb1 = 0.65 meV,
Eb2 = 1.06 meV, Eb3 = 1.48 meV. This behaviour is explained by the position of the
impurity relative to the electron density maximum. The electron density is shifted towards the
right-hand boundary with increasing electric field strength. As a result, the binding energy
decreases if the impurity is positioned in the left-hand side of the QW because the electric field
separates the extra electron and the impurity centre. For the case of the impurity located close
to the right-hand boundary, the electric field brings the extra electron closer to the impurity
and the binding energy increases. The above physics is common to both charged and neutral
donors. For this reason the reflected (figure 5) dependences of the binding energy of the D−
on the electric field strength F and position of the impurity b qualitatively coincide with those
obtained numerically in [25–27] in which the corresponding dependences were thoroughly
studied for the D0.

As pointed out above, for a weak electric field F < F0, the inversion shift δEb (equation
(3.11)) is a linearly increasing function of the position of the impurity b. In contrast to this
case, for a strong electric field F > F0, the inversion shift (4.6) is a nonmonotonic function of
the position b and reaches a maximum for the impurity positioned away from the boundaries
of the QW (figure 6). The reason for this is that for the impurity positions b ≈ ±d/2,
the binding energy Eb = −�W (equation (4.3)) is a small quantity, while for the impurity
positioned in the intermediate region of the QW, the binding energy becomes larger (see
figure 5).

Let us consider possible experiments. Suitable values for the parameters for the GaAs
QW are needed for the case of a strong magnetic field. Thus we take µ = 0.067m0, ε = 12.5,
a0 = 98.7 Å and Ry = 5.83 meV with B = 33.5 T and γ = (a0/aB)2 = 5. The binding
energy Eb(0) = |W0| in bulk material subjected to the chosen magnetic field was calculated
in [1, 28], giving for γ = 5 the result Eb(0) = 0.591Ry = 3.45 meV. For the impurity
centre positioned at b ≈ −0.5(d/2) in a QW of width d ≈ 700 Å, the resonant splitting
�W is defined by (5.9) such that �W ≈ 2.1 meV. This gap corresponds to a frequency of
0.50 THz for the emitted radiation. The chosen width of the QW causes the resonant electric
field Fr and consequently penetration through the potential barrier to be relatively weak. This
allows us to use our analytical approach. When the QW becomes narrower, the resonant
field Fr and penetration increase and the above method of solving equation (2.12) becomes
inappropriate. However, clearly in the presence of stronger electric fields the effect of the
resonant splitting holds for the QWs of standard width. In this case a numerical calculation
should be used.
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For QWs of widths typically used in experiments the parameter q1 can be found from

equation (3.3). For a QW of width d = 320 Å we obtain for the energy −W (0, 0) = h̄2q2
1

2µ
≈

1.67 meV with the corresponding donor electric field F0 = 9.0 × 104 V m−1. The inversion
shift δEb (equation (3.11)) produced by the displacement of the impurity b ≈ 96 Å and
relatively weak electric field F ≈ 4 × 104 V m−1 is δEb ≈ 0.35 meV. With increase of the
electric field F , the inversion shift increases. For the electric field F ≈ 9 × 105 V m−1 and
the same displacement, equation (4.5) gives for the inversion shift δEb ≈ 1.2 meV, which can
be detected in experiments.

In spite of the fact that the approximation of infinitely high barriers is extensively used
for the wide (d > a0) QWs, we are aware that, for a detailed quantitative comparison with
experimental results, barriers with a finite height V0 have to be studied. In particular, for a
weak electric field, the E (0) in equation (2.16) becomes

E (0) = h̄2π2

2µd2

(
1 − 4h̄

d
√

2µV0

)
. (6.1)

For the GaAs QW of width d = 320 Å, a finite barrier of height V0 = 35Ry reduces the
binding energy by about 0.2E (0) and yields a discrepancy compared to results of variational
calculations of the order of several per cent that is of the same order as those obtained by various
numerical methods [18]. However, the finite height V0 of the barrier does not introduce any
novel physics and effects into the problem of a D− in a QW.

Although magnetic fields beyond 30 T are created typically in terms of pulses, time-
independent fields of the same strength are available and can be applied to study the
optical response of low-dimensional structures [14]. Employing the adiabatic approximation
implies the application of magnetic field strengths B � 30 T which requires significant
experimental effort. Nevertheless, we believe that the current advances as regards the
experimental availability of strong magnetic fields is a justification for studying semiconductor
nanostructures subjected to strong external fields.
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